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Implementation of the FCHC Lattice Gas Model 
on the Connection Machine 

M .  H 6 n o n  I 

The 4-dimensional FCHC lattice gas model has been implemented on a Connec- 
tion Machine CM-2 with 16K processors. Symmetries are used to reduce the 
collision table to a size that fits into local memory. This method avoids the 
degradation of the Reynolds coefficient R, ,  but at the price of increased com- 
puting time. Bit shuffling between parallel lattices is introduced to reduce the 
discrepancy between measured viscosities and those predicted from the 
Boltzmann approximation. Thereby a model with a negative shear viscosity is 
obtained: a fluid having a uniform initial velocity is unstable and organized 
nonuniform motions develop. Because of the buildup of very strong correlations 
between the parallel lattices, the discrepancy with the Boltzmann values 
decreases only very slowly with the number of parallel lattices. 

KEY WORDS:  Lattice gases; computational fluid dynamics; parallel 
computing. 

1. I N T R O D U C T I O N  

Here in Nice, work on lattice gases has been concentrated on the three- 
dimensional FCHC model (1' 2) and has followed two directions: (i) building 
efficient implementations; (ii) using them for various applications. 
Examples of applications have been described elsewhere, (3-8) and the 
present paper will be concerned mostly with the implementation problem. 

Our first priority has been to maximize the Reynolds coefficient, in 
order to allow simulations of higher Reynolds numbers and/or to decrease 
the computing costs. A brief history of our efforts in that direction, and a 
list of the successive models which have been developed (FCHC-1 to 
FCHC-8), are presented in ref. 6 (see also ref. 9 for details). 

1 CNRS, URA 1362, Observatoire de la C6te d'Azur, B.P. 229, 06034 Nice Cedex 4, France. 
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It was realized at an early stage that in order to achieve a high 
Reynolds coefficient, one must use detailed collision rules, 0) in which an 
explicit collision table gives the output state for every possible input state. 
However, the number of possible input states in the FCHC lattice is large: 
2 24 in the simplest case, and more if rest particles are added. This makes 
the problems of building and implementing the table nontrivial. 

We have spent some time on the first problem: how to build a 
collision table which maximizes the Reynolds coefficient, under given 
constraints. This has already been described elsewhere, (~~ 5,9,6) and this 
problem can be considered as essentially solved. So I will assume here that 
we already have a detailed collision table to begin with. 

The next problem is the implementation of the table in a computer. 
Because of the large number of entries, in practice only a deterministic colli- 
sion table can be accommodated: for a given input state s there is only one 
allowed output state s'. Note that this contrasts with the two-dimensional 
F H P  lattice, where a probabilistic collision algorithm is generally used. A 
consequence is that the collision operator is no longer strictly invariant 
under isometrics. However, because of the large number of different colli- 
sions, it is possible to achieve statistical isotropy to better than 1.5 %.~5) 

Even so, a large table must be accommodated. We note also that this 
table is accessed with high frequency (once for every node and for every 
time step) and in a quasirandom fashion; therefore it must be stored in a 
way that allows fast random access to individual entries. Fortunately, we 
had access to a CRAY-2, which satisfies these requirements. In fact, it even 
has room for the addition of up to three rest particles, which improves the 
performance. (6) Programs have been running on the CRAY-2 since 1987. (5) 

In January 1990, a Connection Machine Model CM-2 was installed at 
the Institut National de Recherche en Informatique et en Automatisme 
(INRIA) near Nice. I will describe here a new implementation which has 
been developed for that machine. 2 We were motivated by the following 
considerations: (i) the use of a massively parallel machine seems natural for 
a lattice gas simulation; (ii) parallel computers are open toward the future: 
there is room for a considerable improvement of their performances, in 
contrast to serial computers, which appear to have more or less reached 
the limits of presently available technologies; (iii) interactive use should be 
easier (see Section 4); (iv) more computer time should be available. 

The architecture of the CM-2 is drastically different from that of con- 
ventional computers; therefore the collision algorithm had to be organized 

2 That  work actually started in September 1989: thanks  to the Connection Machine Network 
Server facility (CMNS) provided by Thinking Machines Corporation, a large part of the 
code could be written and tested before the arrival of the CM-2. 
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in a completely different way. In keeping with our previous philosophy, the 
ground rule for this new implementation was: nothing should be sacrificed 
concerning the Reynolds coefficient, which should keep its optimized value. 

2. I M P L E M E N T A T I O N  ON THE C O N N E C T I O N  M A C H I N E  

2.1. The Problem of the Collision Table 

The use of a Connection Machine for lattice gas computations is a 
natural idea, and in fact some of the first simulations of the FHP lattice 
were done on a CM-1./11) For the FCHC lattice, to the best of my 
knowledge, the first implementation on a Connection Machine was 
presented by Boghosian. (12) 

In the case of the FCHC lattice, as usual, we run into a problem 
because of the size of the collision table. The situation is summarized in 
Table I, which applies for the CM-2 now available at INRIA. This machine 
is made up of 29---= 512 groups. Each group consists of 25= 32 physical 
processors (so that the total number of physical processors is 2 1 4 =  16K), 3 
plus one Weitek coprocessor and some additional circuitry. The memory is 
completely distributed among the processors: each physical processor has 
218 bits of attached memory. 4 The total amount of memory is therefore 2 32 

bits. 
On the other hand, the collision table contains in the simplest case (no 

rest particles) 224= 16777216 entries. The input state, coded as a 24-bit 
integer, can directly be used as the address into the table, since all such 
integers are present. Thus, each entry contains only the output state, i.e., 24 
bits. In practice it is convenient to round up this last number to 32 (see 
below). We obtain a table size equal to 2 29 bits (Table II, line 1). Thus, the 
full collision table could in principle be implemented, by spreading it over 
all processors. 

3 We follow the usual convention: K =  2 TM, M = 22~ 

4 Bits are a more natural  unit than bytes on the CM-2. 

Table I. Size of CM-2  Memory ( INRIA) 

one physical one group = 32 one CM-2 
processor physical processors = 512 groups 

Memory (Mbits) 0.25 8 4096 

Access time (#sec) for a 32-bit word 25 60 4000 
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The problem is access time (Table I, second line). The access from one 
processor to its memory is fast. Inside a group, access is also comparatively 
fast. But communication between groups is much slower, by about a factor 
100. s Therefore this kind of communication should preferably not be used 
for frequent operations, such as collision table lookup. This was confirmed 
by attempts at implementing the full collision table (see Appendix, 
Section A.5). 

In practice we must therefore consider that each processor has access 
to the memory of its group only, i.e., to a maximum of 8 Mbits of memory. 
But memory is also needed for other things, especially to store the state of 
the lattice, and in practice one cannot reasonably use much more than 
50 % of the memory, or 4 Mbits, for the collision table. The size of the full 
collision table is thus seen to be too large by more than two orders of 
magnitude. 6 

It is therefore necessary to devise a strategy which can work with 
smaller tables. 7 A first solution to this problem was proposed by 
Boghosian, (12) who used a method of partial collisions: each collision is 
decomposed into a sequence of 2 or 3 partial collisions; in each partial 
collision, only a subset of the 24 velocities participates. (A similar approach 
was developed by Somers and Rein, on a different machine. (131) The size of 
the tables is then drastically reduced: for instance, if only 12 velocities par- 
ticipate, the number of entries is reduced to 4096. With this approach, 

5 These times have been measured for the PARIS instructions U_MOVE 1L, AREF32_SHARED, 
GET, respectively, and for a 32-bit word. 

6 The total number of processors is irrelevant here. On the other hand, the problem would be 
alleviated if higher density memory chips were used. 

7 The CM-2 will contain multiple copies of these tables (one in each group). 

Table II. Size of Col l is ion Tables 

Without duality With duality 

Entry Number of Table size Number of Table size 
size entries (Mbits) entries (Mbits) 

Full table 32 16777216 512 9740686 297 
Minimal reduced table 64 18736 1.1 10805 0.7 

After momentum normalization 64 316301 19.3 182475 11.1 
After ascent (12 steps) 64 29312 1.8 16875 1.0 
With 7 rest particles 288 29312 8.1 16875 4.6 

Somers and Rem algorithm 32 106496 3.25 
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however, the collision algorithm is no longer optimal, because only a small 
subset of the possible collisions is allowed. As a result, the Reynolds 
coefficient R ,  is degraded, typically by a factor of the order of 2. 

This would have contradicted our ground rule. Therefore a different 
strategy was implemented. The basic idea is to use the symmetries of the 
problem to reduce the quantity of information which has to be stored. We 
will say that two states belong to the same species if one can be obtained 
from the other by an isometry. This is an equivalence relation; the species 
represent a partition of the full set of states. 

We will generally consider models which violate semi-detailed 
balance. (2'6) In that case, and in the absence of rest particles, there are no 
global constraints on the collision rules. Each collision can be optimized 
separately: one has only to determine the "best" output state for each input 
state considered in isolation. This optimization problem is clearly the same 
for two input states which belong to the same species. This suggests that it 
should be sufficient to store a reduced table, in which only one state for 
each species appears. This distinguished state will be called the deputy of 
the species. The number of species is found to be only 18736 (Table II, 
line 2), i.e., almost 1000 times less than the number of states. On the other 
hand, we lose a factor 2 because the reduced table is sparse: only some 
input states are present. Therefore the input states must also be stored, and 
each entry now has 64 bits. The reduced table fits comfortably into the 
memory of one group. 8 

If the collision table is invariant under duality (exchange of particles 
and holes), then one can extend the definition of a species by including also 
the dual states. In this case a further reduction is possible: the number of 
species drops to 10805. However, Somers and Rein have shown (13~ that 
the best values of R ,  are obtained with schemes which are not duality- 
invariant. 

The computation of the collision, for a given input state s, consists of 
the following three steps: 

1. Find the deputy s of s, and the isometry I which transforms s 
into g. 

2. Look up the reduced table to obtain the output state s corre- 
sponding to d. 

3. Apply the inverse isometry I-~ to ~' to obtain the output state s'. 

8 For models which satisfy semi-detailed balance, the construction of a reduced table is more 
delicate, because global constraints must be satisfied. This problem has been studied in 
ref. 14. 
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Two problems have to be solved: (i) How does one choose the deputy 
of each species ? (ii) For  a given input state s, how does one find the deputy 

and the reducing isometry I? These two problems are related, since the 
criterion of choice of the deputies will determine the procedure. Unfor- 
tunately, no definition of the deputies is known such that ~ and I can be 
found by a simple procedure. One could, for instance, simply write each 
state s as a 24-bit integer, and choose as deputy of a species the state for 
which this integer is largest. However, with such a definition, there seems 
to be no way to find the deputy short of trying all 1152 isometries, which 
is clearly impractical. 

A compromise is to accept a table which is not fully reduced: a species 
may be represented by more than one deputy. Many methods can be 
imagined. In the next section we describe the strategy which was found to 
give the best results. Other strategies which were tried, and also a new 
algorithm proposed by Somers and Rem, (15) are described in the Appendix. 

2.2. Reduction Algorithm 

The strategy consists of two phases: momentum normalization, followed 
by normalized ascent. 

2.2.1.  M o m e n t u m  Normalizat ion.  A first idea which comes to 
mind is to specify that the reduced table will contain only the states which 
have a normalized momentum. (16~ We use here a definition which differs 
slightly from that given in ref. 16. The coordinates of the momentum q are 
defined by 

24 

q~ = ~ sic,~ (~= 1,..., 4) (1) 

where si is the Boolean variable representing the presence or absence of a 
particle with velocity ei. The momentum is said to be normalized if the 
coordinates satisfy 

ql >/q2 1> q3 ~> q4/> [ql -- q2 -- q3 ] (2) 

This new definition corresponds to a simpler algorithm; it was also found 
to give a smaller reduced table. 

It is not difficult to show that a given input state s is reduced to a state 
with a normalized momentum by the following sequence of 11 steps. Each 
step consists of an optional isometry: a given isometry is applied if a given 
inequality is satisfied. Isometries are defined as in ref. 16: 

S~ : symmetry with respect to the plane x~ = 0. 

P ~ :  symmetry with respect to the plane x~ = xp. 
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St :  symmetry with respect to the plane x~ + x 4 = X 2 -t-X 3. 

Z2: symmetry with respect to the plane x~ = x2 + x3 + x4. 

1. If q~ <0,  apply $1. 

2. If q2 < 0, apply $2. 

3. If q3<0,  apply $3. 

4. If q4 < 0, apply $4. 

The q~ are now positive or zero. 

5. If q~ < q2, apply P12. 

6. If q3 < q4, apply P34. 

7. If q, < q3, apply P13. 

8. If q2 < q4, apply P24. 

9. If q2 < q3, apply P23. 

The q~ are now sorted in nonincreasing order. 

10. Ifql+q4<q2+q3, apply $1. 

t l .  Ifqz+q3+q4<ql, apply S : .  

The momentum q is now normalized. 
Note that ql, q2, q3, q4 always refer to the most recently derived state. 
This procedure brings the number of distinct states down to 316301 

(Table II, line 3). Unfortunately, this number is still too large. 
If the collision table is invariant under duality, the following step can 

be executed before the momentum normalization: if the number of particles 
exceeds 12, the input state is replaced by its dual. When this is done, 
another duality must also be performed at the end of the procedure. This 
has the effect of reducing the number of states from 16777216 to 9740686. 
Momentum normalization then produces a final set of 182475 states only. 
However, this is still too large. 

2.2.2. Normalized Ascent.  In order to reduce the number of 
states still further, we follow an idea already mentioned and we look at the 
24-bit integer which represents a state s. This integer will be called the code 
of s and will be represented by Is]. We will try to maximize the code. 
However, instead of looking for the strict maximum inside the species to 
which s belongs, we shall be content with a heuristic procedure which only 
approximates the maximum. One simple procedure, which we call ascent, 
is as follows: we define, once and for all, a sequence of isometries. Each of 
these isometries in turn is considered and is applied if it has the effect of 
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increasing the code. If the sequence of isometries is well chosen, we can 
expect that the end state will belong to a small subset of states with large 
codes. 

It was found that better results are achieved with a modified proce- 
dure, which we call normalized ascent (see below, Section A.3). Each 
isometry is applied only if the following two conditions are met: (i) the 
code increases; (ii) the momentum remains normalized. A number of 
experiments were made, with various sequences of isometrics. In practice, 
the most efficient isometrics are found by applying the algorithm in parallel 
to all states, and counting how many states remain after every step. 9 The 
following sequence of 12 isometrics was finally selected: 

~Y'I, P34, ~Y?2, $4, P23, P34, P12, $3, $4, P34, ~v1, P23 (3) 

We have thus the following 12 additional steps: 

1. If [Z'~s] > [s] and q l+q4=q2+q3 ,  apply ,~V" 1. 

2. If [P34 S] > I s ]  and q3 =" q4, apply P34' 

3. If [S2s]  > [s] and q2 + q3 + q4 = ql, apply S2. 

4. If [S4s] > [s] and q4 = 0, apply $4. 

5. If [P23 s] > Is] and q2 = q3, apply P23. 

6. If [P34 S] > I s ]  and q3 = q4, apply P34. 

7. I f  [P12 S] > I s ]  and  ql  = q2, apply P12. 

8. If [S3s] > Is] and q3 = 0, apply $3. 

9. If [S4s] > [s] and q4 = 0, apply $4. 

10. If [P34 s ]  > I s ]  and q3 = q4, apply P34. 

11. If [_r'~s] > [s] and ql + q4 = q2 + q3, apply S~. 

12. If [P23s] > Is] and q2 = q3, apply P23. 

Here again, s, ql, q2, q3, q4 refer to the most recently derived state. 
This reduces the number of distinct states to 29312 for a nondual 

table, or 16875 for a dual table (Table II, line 4), and so at last we obtain 
a reduced table which fits into the available memory, without degrading 
the Reynolds coefficient. 

9 Only a restricted set of isometrics was considered: the 24 isometrics which are symmetries 
with respect to a hyperplane. This is because (i) this restricts the search space to a more 
manageable size; (ii) these isometrics are comparatively easy to implement on the CM-2, as 
a series of bit swaps. 
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2.3. Computing Speed 

The price we have to pay is in computing time. The computation of a 
collision now involves the application of a sequence of 23 isometrics1~ a 
search in the reduced table; and the application of the 23 inverse isometrics. 
The table search is itself time-consuming because the table is sparse: only 
some input states are present. Therefore one cannot simply identify the 
input state with the address, and a binary search is necessary. 1~ 

Table III shows the time spent by one CM-2 processor on the various 
phases of a node update, in microseconds. The total time is 6130 #sec. For 
the INRIA machine, with 16K processors, this gives a speed of 2.7 x 10 6 

node updates per second; for a "full" CM-2, with 64K processors, the speed 
would be 10.7 x 10 6 node updates per second. This is about 3 times slower 
than a CRAY-2 in quadri-processor mode. (7) 

Propagation takes only 250 #sec or about 4 % of the total time (this 
figure is for a 3-dimensional simulation). 

2.4. Adjustable Viscosity 

For a given collision table and for a given density d the algorithm 
produces a fixed viscosity v. For some applications, however, a variable 
viscosity is desirable. Clearly it is not possible to obtain a viscosity smaller 
than the nominal value v, since the table has already been optimized to 
give the lowest possible value. It is possible, however, to obtain a higher 
viscosity, simply by omitting the collision step at some nodes and/or some 
time steps. 

10 The fact that these isometries are optional, i.e., applied only to a subset of nodes, does not 
result in any time saving because the CM-2 is an SIMD machine. 

11 A hashing scheme should perhaps be considered. However, this would increase the size of 
the table. 

Table III. Time Required by the Various Steps of One 
Node Update (in microseconds) 

Computation of number of particles and momentum 500 
Momentum normalization 890 
Ascent 1320 
Table lookup 2260 
Inverse isometries 910 
Propagation 250 

Total 6130 

822/68/3-4-2 
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We define a collision probability f ~< 1. The output state will be com- 
puted by the collision algorithm with probability f ,  and will be set equal 
to the input state with probability 1 - f .  This corresponds to using new 
transition probabilities A(s --+ s') given by 

= ~fA(s--+ s') if s'.# s (4) 
A ( s ~ s ' )  [fA(s--+s) w l - f  if s ' = s  

The quantity 1/2 defined by (3.25) in ref. 10 becomes 

1 1 
. - f  (5) 

since it implies only terms with s' # s, and the Boltzmann viscosity given by 
(3.38) in ref. 10 becomes 

,6, ~=5 

The nominal value corresponds to f = 1: 

v= �89189 (7) 

By adjusting f between 1 and 0, one can therefore in principle obtain any 
viscosity f in the range v ~< ~ ~< + oo. 

One way to implement this scheme is to generate a random number 
at each node and each time step to decide if the collision takes place. This 
works; but the generation of a large amount of random numbers is time- 
consuming. A more economical method is to decimate the collision table: 
for a fraction 1 - f  of the entries, chosen at random, the tabulated value of 
the output state is replaced by the value of the input state. This is done 
once and for all when the table is loaded into memory. Measurements of 
~) give values in good agreement with (6). 

2.5. Appl icat ions 

The models which have been implemented so far are FCHC-3, 
FCHC-6, FCHC-7, FCHC-8 (see ref. 6 for the definitions), a new model 
FCHC-9 described below in Section 3, and a few other experimental 
models. Among the applications which have already been developed, we 
mention the following. 

1. Systematic measurements of the viscosity v and of the Galilean 
factor g for various models. 
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2. Measurements of correlations (in progress). 

3. Flow behind a grid. 

4. Instability of a modified Kolmogorov flow. Results have been 
reported in ref. 8. 

5. Elaboration of a model with a negative viscosity. 

Only the last topic will be described here. 

3. NEGATIVE-VISCOSITY MODEL 

One of our long-time goals has been to devise a model with a negative 
viscosity. This model could in principle also be made to exhibit a positive 
but arbitrarily small viscosity, and therefore arbitrarily large Reynolds 
coefficients, by using, for instance, the scheme described in Section 2.4. 
Such a model would also be of interest from the point of view of statistical 
mechanics (see ref. 6, Section 9.1). We recall that a necessary condition to 
obtain a negative viscosity is that the collision rules violate semi-detailed 
balance.(1~ 

3.1. Parallel Lattices and Bit Shuffling 

In ref. 6 it was found that for models which violate semi-detailed 
balance, the measured viscosity is unfortunately systematically larger than 
the predicted value, based on the Boltzmann approximation. (1~ It was 
therefore suggested to use parallel lattices, or coupled lattices, in which 
corresponding bits are randomly shuffled. In the limit of a large number of 
lattices, the viscosity of such a model should approach the Boltzmann 
value. 

Parallel lattices are simply identical copies of a given basic lattice; they 
can be thought of as "parallel universes." At time t = 0, the particle popula- 
tion of each lattice is computed from the same velocity field u and density 
d, but using different random numbers. Thus, the macroscopic quantities 
are the same in all lattices (apart from statistical fluctuations), although the 
microscopic realizations are different. This situation normally persists in 
time because of the shuffling. 

Implementing parallel lattices on the CM-2 is quite easy: all that is 
necessary is to add dimensions to the basic geometry. The computing time 
and the memory requirements increase, being proportional to the number 
Y of parallel lattices; in compensation we might expect a decreased level of 
noise, since averages will be taken on a larger number of nodes. 

It is convenient to think of each lattice as a symbolic plane, where one 
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dimension stands for space and the other for velocity. The parallel lattices 
are then viewed as parallel planes, stacked in a third dimension. For  a 
given node and a given velocity, in each lattice one bit represents the 
presence or absence of a particle. This corresponds to a point in the 
symbolic plane. For  the set of parallel lattices, we have then a collection 
of Y bits, which will be called a column, since it corresponds to a column 
of points in the symbolic space. 

The shuffling operates on columns: at the end of each time step, the 
bits of each column are randomly mixed. Various mixing strategies were 
tried, with various degrees of randomness: 

1. We take Y= 2 y coupled lattices. This is implemented on the CM-2 
by creating y additional dimensions, each with size 2. Along 
each of these additional dimensions, the bits are swapped with 
probability �89 A different random choice is made for each column, 
i.e., for each node and for each velocity. This uses random 
numbers generated on the CM-2. 

2. To save time, a single choice is made for all nodes. Thus, for 
each velocity, and along each additional dimension, the bits are 
swapped at all nodes with probability �89 This uses random 
numbers generated on the front end. 

3. The shuffling provided by the above method is far from random: 
only 2 y different permutations can be created, out of a total 
number of Y! possible permutations of the Y bits in a column. It 
might be feared that this shuffling is insufficient. Therefore another 
method was tried: for each velocity, a fully random permutation is 
selected. This permutation is then applied at every node. This 
again uses random numbers generated on the front end. 

Surprisingly, no measurable difference was found between the results 
of these three methods: the effects are insensitive to the shuffling strategy. 
Method 2 was therefore adopted since it is the most economical in terms 
of computing time. 

Results for model FCHC-6 (no rest particles) are shown in Fig. 1 (top 
curve). The abscissa is the number Y of coupled lattices, on a logarithmic 
scale. The ordinate is the kinematic shear viscosity, measured as described 
in ref. 6: the density has a constant value d and the initial velocity has two 
nonzero components, Ux = Uxo, uy = Uyo cos kx,  with Uxo, Uyo, k constants 
(this allows a simultaneous measurement of v and of the Galilean factor g). 
Each value of v was obtained as an average over several runs; the rms 
error, determined from the internal dispersion, is of the order of 5 x 10 -5. 
A four-dimensional lattice was used, with a total number of nodes 
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Fig. 1. Kinematic viscosity v as a function of the number Y of parallel lattices, for models 
violating semi-detailed balance, with 0, 3, and 7 rest particles, and for a density d=0.5.  
Dashed lines: values of v computed under the Boltzmann approximation. 

(including the parallel lattices) equal to 218. The density d = 0.5 was chosen, 
since this is the value at which v is minimal. Other parameter values are 
uxo = 0, uyo = 0.2, k = 2~z/16. The Boltzmann value v = 0.0038 is also shown 
as a dashed line. 

As predicted, the viscosity decreases when the number of parallel 
lattices increases, and it seems to converge toward the Boltzmann value 
for Y-* oo. However, the convergence is disappointingly slow. Y was 
pushed to high values (which would be impractical in a simulation); even 
for Y=512  the discrepancy between the measured viscosity and the 
Boltzmann value is still about 20 % of the discrepancy for a single lattice. 

Similar computations were made for model FCHC-3, which does 
satisfy semi-detailed balance. The viscosity as a function of the number of 
parallel lattices is shown on Fig. 2, again for d = 0.5. The rms error bars are 
also represented. Note that the vertical scale of that figure is dilated 
10 times with respect to that of Fig. 1. Two major differences with the 
previous case of no semi-detailed balance are found: (i) even with a single 
lattice, the measured viscosity is close to the Boltzmann value; (ii) the 
discrepancy decreases quickly when the number of parallel lattices 
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Fig. 2. Kinematic viscosity v as a function of the number Y of parallel lattices, for a model 
satisfying semi-detailed balance, and for a density d = 0.5. Dashed line: value of v computed 
under the Boltzmann approximation. 

increases: already with 4 lattices there is no measurable difference. We 
remark also that the sign of the discrepancy has changed: the measured 
viscosity is smaller than the Boltzmann value. 

3.2. Add i t ion  of  Rest Part ic les 

Another way to decrease the viscosity is to add rest particles. This is 
easily implemented in the CM-2 code. However, the number of states 
increases, and therefore the size of the collision table increases, too. 

When there are rest particles, the reduced collision table is best 
organized as a row-and-column table, where the row is determined by the 
moving input state, i.e., the set of the moving particles of the input state, 
and the column is given by the number of rest particles of the input state. 
This number  can vary from 0 to a fixed maximal value no. Thus, the 
number of rows is the same as before, but one row contains now no + 2 
numbers (one moving input state and no+  1 output states). If  duality is 
used, the largest practical value of no is about  7: one row takes up then 
9 x 32 = 288 bits, and the table size is 4.6 Mbits (Table II), or a little over 
one half of the total memory.  

On the CRAY-2, with a full table, models with up to 3 rest particles 
can be implemented (model FCHC-7 in ref. 6). Figure 1 (middle curve) 
shows the viscosity computed on the CM-2 as a function of the number  of 
parallel lattices for that model. Here a total number  of 22o nodes and a 
value uxo = 0.05 were used. Again the viscosity decreases when Y increases, 
and this time we finally reach our goal: a negative value of the viscosity is 
found with 256 parallel lattices. 

The lower curve on Fig. 1 shows the results for no=  7. A negative 
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value is now reached with 32 parallel lattices. This model will be called 
FCHC-9. The convergence toward the Boltzmann value is even worse than 
in the previous cases. We note also that the difference between no = 3 and 
n o-- 7 is not large; this suggests that it would not be worthwhile to increase 
further the number of rest particles. 

3.3. Properties of Model FCHC-9 

The viscosity in a lattice gas is known to depend somewhat on the 
velocity. (17) This is an effect which does not appear in leading order when 
the Navier-Stokes equations are derived by a multiscale expansion. (2) 
However, subdominant terms, such as velocity-dependent corrections to 
the viscosity, can become relevant when the viscosity is very small, as in the 
present case. Figure 3 shows, for model FCHC-9, that v indeed varies with 
the parameters Uxo and Uyo of the initial velocity field. For  low values of 
Uxo, the viscosity even changes sign when the wave amplitude Uyo increases. 
In a typical simulation, the velocities are of the order of 0.2. Therefore, 
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Fig. 3. Kinematic viscosity v as a function of the parameters Uxo and t,/y 0 of the initial 
velocity field, for model FCHC-9 (7 rest particles, 32 parallel lattices) with a density d =  0.5. 
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unfortunately, the viscosity will not be defined to better than about 0.001 
in such a simulation. In model FCHC-9, where the average value is close 
to 0, even the sign of the viscosity will be undefined. This means that the 
Reynolds number is essentially undefined. 

Figure 4 shows how the viscosity changes with the density d. Note that 
there is a small region around d=0 .5  where the viscosity is almost 
constant. 

The leading-order viscous effect involves a fourth-order tensor which 
is isotropic when all the FCHC symmetries hold. This is not strictly the 
case here because we use a deterministic collision table (see Introduction). 
Moreover, velocity-dependent corrections involve a sixth-order tensor 
which will not in general be fully isotropic. Therefore the isotropy of the 
viscosity tensor was also studied. No significant variation of v was found 
under permutations of axes. However, 
a wavevector oriented at 45 ~ to the x 

No significant dependence of the 
observed in the standard axes. With a 

a small anisotropy was detected for 
and y axes. 
viscosity on the wavenumber k was 
wavevector oriented at 45 ~ a barely 

significant dependence was found; a rough expression for the viscosity, 
derived from a few measurements, is v ~ 0.00052- 0.0006k 2. 

We can verify that the viscosity is negative by starting with a fluid 
in uniform motion (Fig. 5). The lattice dimensions are 128x 128, with 
periodic boundary conditions; the density is d =  0.5; the fluid has initially 
a uniform velocity Uxo = 0.1 along the x axis (this value was chosen because 
it gives rise to a well-marked instability). No space averaging is done: 
individual nodes are shown. Time averaging is done over 200 time steps. 
Black represents a positive velocity along the x axis. 

A spontaneous organization into alternating horizontal currents 
develops. The vertical wavelength is of the order of 5 lattice nodes. From 
the observed doubling time, of the order of 1000, one deduces then a 
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Fig. 4. K inema t i c  viscosi ty  v as a funct ion of the densi ty  d for model  FCHC-9 .  
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Fig.  5. 
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viscosity of the order of v = -0.0005. Note that once the pattern is fully 
formed, it becomes essentially frozen. 

A model with negative viscosity was obtained earlier by Rothman, (is/ 
but with a nonlocal collision algorithm: information is extracted from the 
neighboring nodes in order to obtain a better estimate of the velocity 
gradient. 

3.4. Correlations Between Parallel Lattices 

It was suspected that the poor relaxation of the viscosity toward the 
Boltzmann value in the present model FCHC-9 might be due to the 
buildup of correlations between the parallel lattices. Therefore the following 
statistics were made. We consider a fluid with density d--0.5 and velocity 
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Fig. 6. 
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Statistics on the values of S (number of bits 1 in a column) for model FCHC-9. 

u = 0. At each time step, and in each column, we count how many bits are 
equal to 1. This number  will be represented by S; we have 0~<S~< Y 
( Y =  32 in the present case). Next we make statistics on S: we consider all 
columns and we count how many times each value of S appears. Each 
lattice has a size 128x128; therefore the number  of columns is 
128 x 128 x 24 = 393216. Each bit has a probability �89 of being equal to 1; 
if the bits of a column are independent, we should get a binomial distribu- 
tion. This is indeed what we observe at the initial time t = 0  (Fig. 6). As 
time goes on, however, the distribution progressively changes into a com- 
pletely different shape, with two maxima. This means that in any giveri 
column, either most of the bits are 0, or most  of them are 1. This explains 
why the device of parallel lattices turns out to be so inefficient: the lattices 
tend to become copies of each other, and no longer carry independent 
information. 

Experiments indicate that the time scale for the buildup of the correla- 
tions is proport ional  to the number  Y of parallel lattices. 

As a check, similar statistics were made for model FCHC-3,  which 
satisfies semi-detailed balance. Again 32 parallel lattices were used. No 
correlations appear  in that case; the initial binomial distribution remains 
unchanged. 

Vergassola suggested (19~ that the development of strong correlations in 
model FCHC-9 is related to the fact that the viscosity is close to zero. This 
was verified by modifying the density so as to increase v (Fig. 4): the 
correlations quickly decrease as d moves away from 0.5. 
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4. CONCLUSIONS 

1. Apart from the problem of the collision table, the implementation 
of a lattice gas scheme on the Connection Machine CM-2, using the 
PARIS language, was found to be quite easy and natural. Perhaps this is 
due in part to the fact that one of the applications initially envisaged for 
this machine ~2~ was artificial intelligence, hence the emphasis on Boolean 
operations and other bit manipulations. We list some specific instances: 

�9 Fields of arbitrary lengths can be used. For instance, since each 
component of the momentum can take only integer values from 
- 6  to + 6, it can be represented as a 4-bit field. This results in 
important economies of memory and computing time. 

�9 The memory is addressable at the bit level. For instance, the state 
of a node is represented by a 24-bit field; each bit, corresponding 
to a particular velocity, is individually addressable. 

�9 A single instruction, using the NEWS structure, propagates all par- 
ticles with a given velocity to the next node in a given direction 
parallel to one of the axes. Periodic boundary conditions are 
automatically implemented. 

�9 Thanks to the concepts of geometry and of virtual processors, the 
lattice can have an arbitrary number of dimensions and an 
arbitrary number of nodes. One has only to specify the number of 
dimensions and the size of each dimension; the details of the 
internal implementation are invisible to the programmer. 

�9 With the context flag, an arbitrarily defined subset of the nodes can 
be activated at any given time. This makes it simple to program 
operations which concern only the fluid or only the walls, for 
instance. 

2. One may try to briefly evaluate the respective performances of the 
CRAY-2 and of the Connection Machine for lattice gas problems. (This 
judgment might be biased, however, because I have no personal experience 
with the CRAY machines.) The CM-2 appears to be more user-friendly. It 
has very good input-output and graphic facilities, and can be operated in 
an interactive mode, almost as easily as an ordinary workstation. It can 
also be operated from a distance, through the X Windows system. On the 
other hand, the CRAY-2 is faster and has more memory than the CM-2 
available to us. Thus, the two machines appear as complementary. The 
CM-2 is more comfortable for testing and debugging, experimenting with 
parameter values, and running small to medium simulations. The CRAY-2 
is preferable for large simulations, such as those reported in ref. 7. 
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3. The present results demonstrate that it is possible to build a lattice 
gas model with a negative viscosity, using purely local collision rules. 
Nothing in principle prevents such a model from existing, provided that 
semi-detailed balance is violated. However, actually obtaining a specific 
instance turned out to be more difficult than anticipated. 

Unfortunately, this negative-viscosity model is rather heavy. With 7 
rest particles, more than half of the memory is used by the collision table. 
On the 16K INRIA Connection Machine, the maximum number of nodes 
which can be accommodated in the remaining memory is 2 21 . Since there 
are 32 parallel lattices, the maximum number of actual lattice nodes is 
limited to 216 . 

There is also a price to pay in the computing time, which is multiplied 
by 32. This is only partially recouped by the decrease in the noise level 
at macroscopic output, since the parallel lattices are strongly correlated. 
Shuffling particles between the parallel lattices also takes time. 

Another problem, already noted, is that the viscosity is rather ill- 
defined. 

Finally, the gain in the Reynolds coefficient turns out to be offset by 
the smaller size of the lattice. In order to have a nonzero Galilean factor 
g, we must move away from d=0.5;  a value d=0.45 seems reasonable. 
Measurements give then g = 0.063. With v = 0.001 (Fig. 4), we obtain from 
(40), (41), and (53) in ref. 6 a value of R . = 2 7 ,  which seems to be an 
improvement by a factor 2 over the best previous value R .  = 13.5 for 
model FCHC-8. However, since the available number of nodes is divided 
by 32, the characteristic scale 10 (expressed in lattice units) in a three- 
dimensional simulation will be divided by 321/3 ~- 3.2. Therefore the 
Reynolds number, given by (50) in ref. 6, is actually smaller than before. 

Therefore this model does not seem to be usable for large-scale fluid 
simulations. It might be of interest, however, for fundamental statistical 
mechanics studies on the behavior of a system in the vicinity of v = 0. 

It would be highly desirable to find another way to coerce the viscosity 
into approaching the Boltzmann value. For this, a detailed understanding 
of the correlations will probably be necessary. 

4. As pointed out in the Introduction, the present scheme achieves 
only approximate isotropy. Exact isotropy could be obtained by the 
following modification of the collision algorithm ~13' 15): a random isometry 
(i.e., randomly chosen among all 1152 isometries) is first applied to the 
input state; then the deterministic algorithm is applied; finally the inverse 
of the initial random isometry is applied. 

In the CRAY-2 implementation, where the computation of a collision 
consists of a single table lookup, this modification would considerably 
degrade the performance, and for this reason it has never been 
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implemented. In the present scheme, on the other hand, the computing 
cost of a collision is already large and it might be of interest to add the 
randomizing isometries. 

APPENDIX .  A L T E R N A T I V E  R E D U C T I O N  STRATEGIES  

We describe briefly some other strategies which were tried in order to 
reduce the size of the collision table. 

A.1. A S C E N T  ONLY 

In this and the following three sections, for historical reasons, only the 
case of a duality-invariant table is considered. The results should therefore 
be compared with those of the last two columns of Table II. 

Starting from the initial set of 9740686 states, we apply directly the 
ascent procedure, as described in Section 2.2.2, without paying any 
attention to the momentum. In other words, we simply try to maximize the 
code. 

The best sequence of isometries which was found produced after 
25 steps a reduced set of 62358 states. By comparison, the method of 
Section 2.2 produces in the dual case a reduced set of 16875 states after a 
total of 23 steps. 

A.2. M O M E N T U M  N O R M A L I Z A T I O N  W I T H  A S C E N T  

Here we use momentum normalization as described in Section 2.2.1, 
with the following variation: when there is an indifferent choice, i.e., when 
the test produces a zero value, then instead of doing nothing, we apply the 
isometry if it increases the code. For instance, the first step becomes: 

1. If q~ <0,  or if (ql = 0  and ISis] > [-s]), apply S 1. 

Again for historical reasons, in this and the following two sections, the 
normalization differs slightly from that described in Section 2.2.1: the last 
two steps are replaced by 

10. If q2 "]- q3 < ql + q4, apply X1. 

11. If q4<0, apply $4. 

After the 11 steps of this modified normalization, the number of states 
is reduced from 9740686 to 43469. 
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A.3. M O M E N T U M  NORMALIZATION,  FOLLOWED BY 
U N N O R M A L I Z E D  ASCENT 

This strategy is quite similar to that described in Section 2.2, the only 
difference being that during the ascent phase, we do not ask that the 
momentum remains normalized. Thus, for instance, step 1 of the ascent 
becomes simply 

1. If [Z~s] > [s], apply Z1. 

In the best case, the number of states is reduced after 12 ascent steps 
to 21433. 

A.4. PARTIAL NORMALIZATION OF SECOND-ORDER 
M O M E N T U M  

A natural idea is to extend the normalization approach, using not only 
the first-order momentum q but also the second-order momentum X. This 
is a symmetric 4 x 4 tensor: 

X~ = ~ sici~ci~ (A1) 
i 

A full normalization of the second-order momentum would be too com- 
plicated and time-consuming. A partial normalization can be achieved as 
follows. First we use the isometries P~  to put the diagonal elements in 
nonincreasing order: JfH 1> X22 ~> X33 ~> J(44- Then we use the isometries S, 
to make as many nondiagonal elements positive or zero as possible. Since 
the product S~$2S3S4 (symmetry with respect to the origin) leaves the 
second-order momentum invariant, only three of these isometries are inde- 
pendent; therefore only three nondiagonal terms can be made nonnegative. 
We can, for instance, use $2, $3, and $4 to make respectively X12, X~3, and 
X14 nonnegative. 

Since we do not want to lose the benefit of the previous first-order 
normalization, these isometries are applied only if they leave the first-order 
momentum invariant. 

This algorithm represents 8 additional optional isometries. For a dual 
table, the number of states was found to be reduced from 182475 to 47261. 
This is not as efficient as the strategy described in Section 2.2. Also the 
computation of the second-order momentum components, and their up- 
dating after each isometry, are time-consuming. Therefore this approach 
was not pursued. 
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A.5. FULL TABLE IMPLEMENTATION 

I have tried implementing the full collision table, distributing it 
between all processor memories. It is then necessary to use the router com- 
munication mechanism of the CM-2, with the PARIS instruction GEX, to 
retrieve an output state from the table. As mentioned in ref. 21, Section 7.4, 
this instruction has two drawbacks: (i) it is time-consuming, because each 
node must first send a request to the appropriate processor, containing the 
desired table entry, and then this entry must be sent back to the node; (ii) 
it uses large amounts of temporary storage, because the path from every 
node to the corresponding table entry must be temporarily stored. 
Experiments show indeed that from 500 to 1000 bits of memory per lattice 
node are required. This restricts the size of the lattices which can be 
simulated. Moreover, the time taken by the GET instruction is found to 
increase sharply when the memory limit is approached; apparently a traffic 
jam begins to develop. 

The lattice gas problem may in fact represent one of the worst possible 
cases for the use of the router, because (i) the probabilities of the input 
states are very uneven, so that some table entries will be queried 
simultaneously by many lattice nodes, while other entries are not used; (ii) 
the communication pattern is completely disordered: any node may query 
any table entry, in a quasirandom fashion; (iii) the communication pattern. 
is entirely different from one time step to the next, so that there is no 
possibility to use a router compiler. 

On a larger CM-2 machine, the strategy of full table implementation 
might be viable. Good results were reported, for instance, on a machine 
where each processor has 4 times more memory./22) When ample room is 
available, the GET instruction uses about 4000#sec. This compares 
favorably with the figures quoted in Table III. 

A.6. NEW REDUCTION ALGORITHM OF SOMERS AND REM 

A new method for reducing the size of the table has been recently 
proposed by Somers and Rein. ~15) Its structure is similar to that of the pre- 
sent paper: for a given input state s, one finds an isometry I which trans- 
forms s into a deputy 12 g; then a reduced collision table is looked up to find 
the corresponding output state g'; and finally the inverse isometry 1-1 is 
applied to obtain s'. The difference lies in the choice of the deputies and in 
the method used to determine I and g. For each set of two opposite 
velocities, a "parity bit" (my notation) is defined, equal to 1 if one particle 

lz Ca l l ed  a representative in ref. 15. 
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is present, and to 0 if the two particles are both present or both absent. The 
set of the parity bits forms a 12-bit integer sa. Isometries are then applied 
to reduce sa to a normalized form. The number of entries in the reduced 
table is 106496. This table can be set up essentially as a full table: the 
address can be simply computed from the input state, and therefore only 
the input state has to be stored. 

As a result, the reduced table fits into the allowed 4 Mbits on the 
CM-2 (Table II, line 5). I have made a first try at coding Somers and 
Rem's method on the CM-2. The result is a total time of 1450/~sec for one 
node update (1270 for collisions and 180 for propagation, for a three- 
dimensional simulation). 13 This is about 4 times faster than the method of 
the present paper (Table III). For a full CM-2 with 64K processors, the 
speed would thus be 45 million node updates per second. 

The reasons for the better performance of Somers and Rem's algo- 
rithm appear to be that (i) with the addition of a few auxiliary tables, the 
whole collision algorithm can be programmed essentially as a sequence of 
lookups, plus a few simple operations; (15) (ii) in particular, the reducing 
isometry depends only on sa, which is 12 bits long, and can therefore be 
read at once from a table with only 4096 entries; (iii) as already noted, the 
reduced collision table can be set up as a full table, with immediate access 
to the required entry: no binary search is required. 

On the other hand, it should be noted that the reducing scheme of the 
present paper achieves a smaller reduced table. In particular, enough room 
is left for the addition of several rest particles. This made possible the 
model with negative viscosity described in Section 3. 
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